§ 23.951

FUEL SYSTEM

§ 23.951 General.

- (a) Each fuel system must be constructed and arranged to ensure fuel flow at a rate and pressure established for proper engine and auxiliary power unit functioning under each likely operating condition, including any maneuver for which certification is requested and during which the engine or auxiliary power unit is permitted to be in operation.
- (b) Each fuel system must be arranged so that—
- (1) No fuel pump can draw fuel from more than one tank at a time; or
- (2) There are means to prevent introducing air into the system.
- (c) Each fuel system for a turbine engine must be capable of sustained operation throughout its flow and pressure range with fuel initially saturated with water at 80 °F and having 0.75cc of free water per gallon added and cooled to the most critical condition for icing likely to be encountered in operation.
- (d) Each fuel system for a turbine engine powered airplane must meet the applicable fuel venting requirements of part 34 of this chapter.

[Amdt. 23–15, 39 FR 35459, Oct. 1, 1974, as amended by Amdt. 23–40, 55 FR 32861, Aug. 10, 1990; Amdt. 23–43, 58 FR 18971, Apr. 9, 1993]

§ 23.953 Fuel system independence.

- (a) Each fuel system for a multiengine airplane must be arranged so that, in at least one system configuration, the failure of any one component (other than a fuel tank) will not result in the loss of power of more than one engine or require immediate action by the pilot to prevent the loss of power of more than one engine.
- (b) If a single fuel tank (or series of fuel tanks interconnected to function as a single fuel tank) is used on a multiengine airplane, the following must be provided:
- (1) Independent tank outlets for each engine, each incorporating a shut-off valve at the tank. This shutoff valve may also serve as the fire wall shutoff valve required if the line between the valve and the engine compartment does not contain more than one quart of fuel (or any greater amount shown to

be safe) that can escape into the engine compartment.

- (2) At least two vents arranged to minimize the probability of both vents becoming obstructed simultaneously.
- (3) Filler caps designed to minimize the probability of incorrect installation or inflight loss.
- (4) A fuel system in which those parts of the system from each tank outlet to any engine are independent of each part of the system supplying fuel to any other engine.

[Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13093 Aug. 13, 1969; Amdt. 23–43, 58 FR 18971, Apr. 9, 1993]

§ 23.954 Fuel system lightning protection.

The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by—

- (a) Direct lightning strikes to areas having a high probability of stroke attachment:
- (b) Swept lightning strokes on areas where swept strokes are highly probable; and
- (c) Corona or streamering at fuel vent outlets.

[Amdt. 23-7, 34 FR 13093, Aug. 13, 1969]

§ 23.955 Fuel flow.

- (a) General. The ability of the fuel system to provide fuel at the rates specified in this section and at a pressure sufficient for proper engine operation must be shown in the attitude that is most critical with respect to fuel feed and quantity of unusable fuel. These conditions may be simulated in a suitable mockup. In addition—
- (1) The quantity of fuel in the tank may not exceed the amount established as the unusable fuel supply for that tank under §23.959(a) plus that quantity necessary to show compliance with this section.
- (2) If there is a fuel flowmeter, it must be blocked during the flow test and the fuel must flow through the meter or its bypass.
- (3) If there is a flowmeter without a bypass, it must not have any probable failure mode that would restrict fuel flow below the level required for this fuel demonstration.
- (4) The fuel flow must include that flow necessary for vapor return flow,